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Abstract--Laminar gas-liquid flow through a channel with corrugated bottom, driven by a combination 
of gravity and pressure drop, is considered. A linear analysis, valid for small-amplitude disturbances but 
arbitrary wavelength and Re number, leads to Orr-Sommerfeld type equations with nonhomogeneous 
boundary conditions. The interface amplitude relative to the wall is examined and linearly infinite 
amplification is computed at specific resonance conditions. With increasing gas velocity, the range 
of corrugation wavelengths most active in producing strong interaction with the interface 
expands considerably, and moves to higher values. It is argued that the resonant phenomenon under 
consideration may influence the interracial dynamics of gas-liquid flows in small-scale passages. © 1997 
Published by Elsevier Science Ltd 
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1. INTRODUCTION 

Flows bounded by a wall with small-amplitude perturbations comprise an interesting class of 
problems with periodic forcing. Such flows are in principle liable to resonance phenomena in the 
neighbourhood of their characteristic frequencies. The case presently under investigation is the 
separated (co- or countercurrent) flow of a gas and a liquid through a channel with corrugated 
top and bottom walls. 

This setup is a useful prototype of  the periodic flow constrictions appearing in the small passage 
of  process equipment such as absorption columns, and trickle-bed reactors. Also, surface 
modifications of  condensers and falling-film evaporators--aimed at increasing heat transfer 
rates--are frequently of  a similar geometry. 

Of special interest is a consideration of the effect of gas-shear, under conditions such that it is 
not negligible. Indeed, during gas-liquid flow away from flooding, gas-shear is often neglected and 
the flow is modelled as a liquid film driven solely by gravity. 

The effect of  linear wall perturbations in such zero-shear flow has been studied in previous work 
(Bontozoglou & Papapolymerou 1996). The main conclusion was that a moderate amplification 
of  the wall structure (with maximum value approaching 2.5) occurs for wavelengths in the 
range 0.001 to 0.005 m and Re = 100-300. This falling film behaviour was associated with a 
resonance phenomenon involving inertial terms, as indicated by the fact that it was not observed 
in previous analytical and numerical calculations based on the Stokes approximation (Wang 1981, 
Pozrikidis 1988). 

The only other prediction of such a resonance known to the authors appears in the inviscid 
theory of  uniform, horizontal flow over a wavy wall (Kennedy 1963, Mei 1969, Miles 1986, 
Bontozoglou et  al. 1991, Sammarco et  al. 1994). Linear inviscid theory predicts that for a uniform 
liquid velocity U equal to 

U 2 = ( g / k ) t a n h  k h  [1] 
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resonance takes place between a stationary surface wave and the bottom forcing, leading to infinite 
free-surface amplitude. Symbols h and k in [1] denote liquid film thickness and wave number of 
the wall corrugations respectively. This theory is realistic for large-scale phenomena (sediment 
transport in rivers, Bragg scattering of ocean waves in harbours) and only for horizontal or 
near-horizontal flows. 

The falling film, viscous resonance reported by Bontozoglou and Papapolymerou (1996) 
manifests itself for short wall corrugations and very thin films. Because of the small scale, the 
restoring force is surface tension rather than gravity, and the phenomenon appears for flow at any 
inclination from vertical to horizontal. However, the linear amplification computed is finite, leaving 
the practical significance of the phenomenon open to question. 

The goal of the present work is to investigate the effect of a parallel gas flow (co- or counter- 
current) on this resonance. Two-phase flow with a similar geometry has only been considered in 
the limit of zero Re number (Dassori et al. 1984), where again the wall flow resonance does not 
appear. With the inclusion of inertia terms, it is intuitively expected that the moving gas will exert 
a destabilizing influence. Two known mechanisms--caused by the periodic variation of interracial 
pressure and shear stress--are the wave crest suction by a Bernoulli effect and the energy input 
by work done on the interface (Hanratty 1983). (In the context of the present study, we do not 
refer to instability in the classical sense, but rather to steady configurations corresponding to high 
interfacial wave amplitude.) 

The analysis is based on the assumption of wall corrugations with amplitude a much 
smaller than the liquid film height h. Flow variables are expanded with respect to the small 
parameters e = a/h and the linear, first-order problem is solved numerically by a finite-difference 
scheme. 

2. FORMULATION OF THE PROBLEM 

Two-dimensional flow is considered through a channel at an angle ~b relative to the vertical 
direction. The channel bottom wall is covered with small-amplitude sinusoidal corrugations at right 
angles to the flow direction (figure 1). The flow is described by an x, y coordinate system, 

H \ \ \  \ 

\ 
\ 

Figure 1. Sketch of the flow with all pertinent parameters. 
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where y is the direction pointing away from the wavy wall. The origin of  the y-axis is set at the 
mean lower wall level and the corrugations are described by the equation 

w ( x )  = a cos k x  [2] 

The computational domain extends from the corrugated wall to the zero-shear plane in the gas 
flow. Thus, details of the gas flow near the upper wall, which are not of  immediate interest to the 
present study, are not computed. 

The mean liquid film thickness is equal to h and the free surface of  the liquid is located at 

q(x)  = h + f i x )  [3] 

The interface shape f i x )  is described by the linear relation 

f ( x )  = fla e ikx [4] 

where fl is the amplification of the wall corrugations and is in general complex. This expression 
corresponds to waves of  the same wavelength as the disturbances but of  arbitrary amplitude and 
phase relative to the wall. The mean thickness of the gas phase, up to the zero-shear plane, is 
equal to m. Thus, the average width of the computational domain is 

W = h + m [5] 

The flow in each fluid domain is described by the continuity equation and the two components 
of  the Navier-Stokes equation. Subscripts L and G are used to denote the liquid and gas phase 
variables. Boundary conditions are no-slip on the solid wall: 

U L = V L = 0  o n y = w ( x )  [6] 

Also, the velocity normal to the stationary interface is zero for each phase 

UL'n = 0 [7a] 

u a . n = 0  o n y  = q(x)  [7b] 

where u = (u, v). Terms n and t are the unit vectors, locally normal and tangential to the interface, 
and are given (in terms of the interface slope f ' )  by the expressions 

t = ( 1 , f ' ) / x / 1  + f , 2  [8a] 

n = ( f ' ,  - 1) /x /1  + f , 2  [8b] 

(Note that, throughout the text, derivatives are denoted by primes and subscripts are used to define 
the phase or the directional component.) 

Continuity of  velocities along the interface dictates the condition 

UL't----- u~'t o n y = q ( x )  [9] 

Shear and normal stresses balance on the interface, giving the equations 

(ffL'n)'t = (ffc'n)' t  [10] 

f "  
(ffL.n).n--(ff6.n).n=~ (1 +f,2)3~2 [1 1] 

Symbol s denotes the surface tension and 6 is the stress tensor, defined for each fluid in terms of 
the rate of  strain tensor e and Kronecker 6 

6 =  

Finally, at the zero-stress plane, the slope of  
in the condition 

duc/dy = 

The perturbation expansion performed is 

as :  

-p_6 + 2pe [12] 

the gas velocity profile is set equal to zero, resulting 

0 o n y = h + m  [13] 

based on the small variable e defined as 

e = a/h [14] 
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The flow is described by the stream functions, OL and ~o~, which are expanded perturbation 
series in the small variable 5: 

0L = ~o~+ ~ , ~  lisa] 

= o,/,~1~ [15b] 

The zero-order problem corresponds to laminar flow in a channel with flat walls. The flow 
is driven by a combination of gravity in the direction of flow, g~, and pressure drop, A P / L .  

We define the terms 

) pL = vL \ PL gx [16a] 

pG = vG \ Pc g" [16b] 

where p and v are the density and kinematic viscosity of the two phases. After algebraic 
manipulations, the following solution is derived: 

Pt-Y3 AYZ [ 17a] 
~k[°)= 6 + - 2 -  

where 

~l/~ ) pgy3 + By2 
= 6 - - ~ - + C y  [17b] 

[18a] 

B = - p c ( h  + m)  [18b] 

h 2 
C = (pL - pG) 2 + h(A - B)  [18c] 

When A P / L  is opposite to the direction of gravity, gas shear pulls the liquid upward. Representative 
velocity profiles with increasing gas velocity, shown in figure 2, have the expected gradual transition 
from countercurrent to cocurrent flow. 

The first-order problem is treated by following the linear response of [4]. The respective stream 
function terms are expressed as 

IpL~(x, y) = q&(y) e i~" [19a] 

0~(x,  y) = ~o(y) eik" [19b] 

Modelling of the gas-phase disturbance by [19b] implies that separation above the waves does not 
take place, which is consistent with the linear approximation adopted throughout the study. 

[19a & b] are substituted in the Navier-Stokes equations for each phase, which are subsequently 
combined to eliminate the pressure and lead to Orr-Sommerfeld type ordinary differential 
equations. The variables are non-dimensionalized by using the mean liquid film thickness h as the 
characteristic length for both phases, the volume flow rates per unit span, q~ and qo, as the 
characteristic values for the stream functions, and qL/h and qG/m as the characteristic velocities. 
The resulting dimensionless equations are 

(D -- kS)2~bL --= UL(D 2 - kS)tpL -- U:_tpL [20a] 

1 ) 2 h 
[20b] 
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Figure 2. Zero-order velocity profiles in the liquid film and around the interface for film thickness 
h = 0.001 m and AP/L = 30, 200, 500 and 100 N/m 3 (a to d respectively). 

where ReL and Reo are the two Reynolds  numbers ,  

ReL = q__~L 
VL 

defined as 

[21a] 

Reo = q_~c [21 b] 
YG 

Term D is the differential opera to r  d/dy and UL, Uc are the dimensionless,  zero-order  velocities, 
given by the expressions 

) \qu]~, ~ + Ahy [22a] 

( m'~(p-~h2y: ) 
Uo = k q-~%]\--2--- + Bhy + C [22b] 

For  conciseness, the same symbols  are retained for  the now dimensionless variables y,  D, k, I~L ,  

~o,  UL and Uo. 
[20] is the famil iar  O r r - S o m m e r f e l d  equat ion o f  linear stability wi thout  the phase  velocity 

parameter .  However ,  the present  p rob lem is not  an eigenvalue problem,  since not  all bounda ry  
condi t ions are homogeneous .  

Accord ing  to a wel l -known technique, the dimensionless bounda ry  condit ions a long the wall and 
the interface are expanded  in Tay lo r  series a round  the respective mean  levels (y = 0 and y = 1). 
The  final expressions are 

~0L(0) = 0 [23a] 

OL(O) = - U[(O) [23b1 

~tL(1) = --f lUL(I)  [23c] 

~#o(1) = -  f l ( h )  Uc(1) [23d1 

IJMF 24/1 E 
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[23e1 

[23t] 

()()( /tG qG h Re = --  { sk2h  -1- (pL --  p o ) g ,  h 3 } - - f i  ReLUL(I )U{(1)  + fi ~L qLL m ~ U~ ( I )Uc , ( ] )  [23g1 
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Figure 3. The interfacial amplification as a function of liquid film thickness, for gas spacing m = 0.005 m 
and pressure drop AP/L = 30 N/m 3. Plots refer to wall corrugations with the following length: 
(a) 0.0025 m, (b) 0.005m, (c) 0.01 m. The points in (b) are computed with a finer discretization 

NL = Nc = 41. 

Finally, the condition along the zero-shear plane results in the equations 

0 

+ = 0  

[24a] 

[24b] 

3. N U M E R I C A L  SOLUTION 

[20a & b] with the boundary conditions [23a-fl and [24a & b] are solved by a centred, 
finite-difference scheme. The liquid and gas film are discretized by NL and NG equally spaced points 
respectively. At each point, the value of  the unknown stream function amplitude, ~kL or ffc, is split 
into a real and an imaginary part. Eight additional (fictitious) poin ts - - two on each side of  each 
region--are  added to discretize the third and fourth derivatives. The last two unknowns are the 
real and imaginary parts of  the free surface amplitude ft. Thus, the total number of  unknowns is 
2 ( N L + 4 ) + ( 2 N ~ + 4 ) + 2 = 2 N L + 2 N c +  18. 

[20a & b] are applied to the NL and Na points across the liquid and gas film respectively, resulting 
in NL + NB equations. The boundary conditions provide another nine complex equations. Setting 
the real and imaginary parts to zero leads to (2NL + 2N~ + 18) linear algebraic equations in the 
unknowns. 

Test runs were performed with NL and Nc taking the values 11, 21 and 41. The results presented 
are computed using NL = Na = 21. This discretization proved accurate enough for the purposes 
of  the present study, as indicated by figure 3(b), where representative points (computed with 
NL = NG = 41) coincide with the rest of  the results. 

4. RESULTS 

Computat ions  are done for liquid and gas with kinematic viscosities VL = 10-6m2/s and 
v~ = 10 -4 m2/s respectively. The range of  ReL and Reo numbers covered is such that the laminar 
solution is expected to offer realistic estimates. It may be argued that for a range of the Re numbers 
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considered, the interface will be wavy because of the growth of linearly unstable disturbances 
independent of  the corrugated walls. However, in the linear approximation the two phenomena 
are separable. Therefore, the present analysis is valid and the final flow is the result of  linear 
superposition. The coupling of free and forced oscillations in the non-linear regime is a very 
interesting question which is beyond the scope of the present work. 

The main variable examined is the dimensionless interfacial amplitude/~, as a function of flow 
parameters and wavelength of the sinusoidal wall corrugations. Different inclinations were tested 
and representative results are shown for a channel at an angle ~b = 60 ° to the vertical and also for 
a horizontal channel. In the calculations, the pressure drop AP/L  and void fraction h are taken 
as input parameters and liquid and gas flow rates are computed from the zero-order solution. 
Pressure drop is always in the direction forcing the gas to flow upward. 

In the limit of ReL = 0, Rec, = 0, the results of  Dassori et al. (1984) are recovered. There are 
an extension of the free-surface results of Wang (1981), with no major qualitative differences. 
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Figure 4. The phase of the interface relative to the wall as a function of liquid film thickness for 
wavelengths (a) L = 0.0025 m and (b) L = 0.005 m. 
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Figure 5. Liquid Re number as a function of liquid film thickness for gas spacing m = 0.005 m and pressure 
drop AP/L = 500 N/m 3. 

The common conclusion, at the Stokes limit, is that the free surface (or interface) waves have an 
amplitude that is always smaller than that of  the wall corrugations. 

In a recent work (Bontozoglou & Papapolymerou 1996), it has been demonstrated tha t - -by  
relaxing the Stokes flow assumption--a resonance interaction is calculated, leading to stationary 
surface waves with amplitude larger than the wall. The wavelengths of  interest for free falling films 
are of the order of  millimeters, and maximum amplification (wave amplitude/wall amplitude) is 
around 2.5. As a verification of  the validity of the present code, these last results are recovered 
in the limit of  flow driven only by gravity (AP/L = 0). 

The inclusion of a gas flow turns out to provide more than a trivial extension of previous 
behaviour. It is intuitively expected that energy input from air to water may enhance interfacial 
instabilities. Indeed, practically infinite amplifications are calculated from the linear formulation 
of  the present work. Furthermore, an entire series of  resonances appears when varying the flow 
rates. The overall behaviour is very rich and unexpected and--given the large number of  
independent parameters--particularly difficult to classify in a systematic way. 

4.1. Results for low pressure drop 

Results are computed for a representative dynamic pressure drop AP/L = 30 N/m 3. Infinitesimal 
corrugations with wavelength L in the range 0.001--0.01 m are considered on a wall at ~b = 60 ° 
to the vertical. For  each wavelength, the liquid film thickness is the independent parameter. 
The constant pressure drop chosen is low in the sense that the liquid flow is weakly influenced by 
the countercurrent gas flow. The velocity profile (a) in figure 2 is representative of  the present 
conditions. 

The spacing m (from interface to the zero-stress plane in the gas flow) is kept constant in 
all runs and equal to 0.005 m. This means that, for the higher liquid flow rates, the overall 
channel width changes slightly from run to run. The reason behind this choice is to keep Re~ 
roughly constant, and thus, decrease by one the number of independent parameters. 
The aforementioned pressure drop and channel dimension correspond to ReG roughly equal to 
100. 

The amplitude of  the stationary interfacial wave as a function of  liquid film thickness is 
shown--for  three representative wavelengths--in figure 3(a)-(c). Two resonance peaks appear in 
all cases, with the spacing between them decreasing with increasing wall wavelength. This is 
contrasted with the single resonance, computed (Bontozoglou & Papapolymerou 1996) for a liquid 
falling film with no air flow. 



140 v .  B O N T O Z O G L O U  a n d  G.  P A P A P O L Y M E R O U  

5.0 

4.0 

~D 

3.0 
O . .  

~ 2,0 

(a) 

0.0000 0.0004 0.0008 0.0012 0.0016 

liquid film thickness (m) 

5.0 

4.0 

3.0 .o_ 

~ 2.0 

I 

1.0 i 

0.0 J 
0.0000 

(b) 

0,0004 0.0008 0.0012 0.0016 

liquid film thickness (m) 

5.0 

4.0 

=- 3.0 
o 

8 

1.0 

0.0 
0.0000 0.0004 0.0008 0.0012 

liquid film thickness (m) 

(c) 

0.0016 



INTERFACIAL RESONANCE IN GAS-LIQUID FLOW 141 

5.0 

4.0 

=" 3.0 
o 

E 
~ 2 . 0  

1.0 

o o .  J 
0.0000 0.0004 0.0008 

(d) 

0.0012 0.0016 

liquid film thickness (m) 

5.0 

4.0 

=" 3.0 o 

~ 2.0 
J 

1.0 

0.0 

(e) 

0.0000 0.0004 0.0008 0.0012 0.0016 

liquid film thickness (m) 

Figure 6. The interfacial amplification as a function of  liquid film thickness for gas spacing rn = 0.005 m 
and pressure drop AP/L = 500 N/m 3. Plots refer to wall corrugations with the following length: 

(a) 0.0025 m, (b) 0.005 m, (c) 0.001 m, (d) 0.10 m, (3) 0.15 m. 

The most important observation is that the two maxima of interfacial amplitude, computed 
for L = 0.005 m and h around 0.00012 and 0.00030 m respectively (figure 3(b)), are practically 
infinite. Linearly infinite values imply a strong resonance and it is interesting that this result occurs 
in spite of the dumping effect of viscosity which is rigorously accounted for in the present 
computation. 

Infinite amplification should not be taken literally, since for interfacial waves beyond a certain 
steepness the linear approximation ceases to be valid. In similar cases (Miles 1986) non-linear 
theory indicates that the locus of steady solutions becomes triple-valued around the resonance, with 
two turning points and an unstable middle branch. The value of the present computation lies in 
the demonstration that genuine resonance---rather than small amplification--takes place at the 
specific conditions. This behaviour is contrasted with the aforementioned results of the authors 
for free falling films and is evidently attributed to the effect of gas flow. 

Figure 3(a) and (c) demonstrates that, when moving away from exact resonance, the interface 
amplitude becomes finite and eventually diminishes. As far as parametric dependence on 
wavelength is concerned, comparison with the falling film results (Bontozoglou & Papapolymerou 
1996) indicates that the inclusion of gas flow leads to maximum resonance for longer wall 
corrugations. Also, the range of wavelengths with strong amplification becomes wider. Results to 
follow will show that these trends continue with increasing gas velocity. 
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The interfacial resonance phenomenon can be attributed to a forcing mechanism. The argument 
is that large stationary waves appear along the interface when the surface velocity of  the liquid 
film becomes equal to the natural phase velocity of interfacial waves at the pertinent flow 
conditions. Under these circumstances, the wall disturbances can feed energy directly to the 
interfacial structures. The appearence of two peaks in figure 3(b) can then be justified by the above 
mechanism. It is well-known that free surface waves have a single solution branch (phase velocity 
as a function of wavelength), whereas interfacial waves with gas flow have two solution branches 
(see for example Yih (1979)), Thus, one is led to expect one peak in the falling film computation 
and two peaks in the gas-liquid flow. 

Finally, the phase of  the interface relative to the wall roughness is shown (for L = 0.005 and 
L = 0.0025) in figure 4(a) and (b). It is interesting that a discontinuous jump is calculated only for 
one of the resonances (a different one in each case). The other resonance seems to be associated 
only with a change of curvature in the phase vs film thickness plot. 

4.2. Results for high pressure drop 

Next, results are presented for a representative dynamic pressure drop zXP/L = 500 N/m 3. 
Infinitesimal corrugations with wavelength L in the range 0.002-0.2 m are considered on a wall 
at ~b = 60 ° to the vertical. The spacing m (from interface to the zero-stress plane in the gas flow) 
is kept constant in all runs and equal to 0.005 m. The aforementioned pressure drop and channel 
dimension correspond to Re(~ roughly equal to 2100. 

The constant pressure drop chosen is high in the sense that the mean liquid flow changes direction 
with increasing liquid film thickness. This is demonstrated in figure 5, where ReL is seen to 
start at positive values (in our sign convention this means upward flow, cocurrent with the gas), 
reach a maximum and then decrease continuously, turning beyond a point to countercurrent flow. 
This behaviour corresponds to the trivial result that, for high-speed gas flow with constant gas 
spacing, thin liquid films are conveyed upward by the interfacial drag, whereas thicker films are 
pulled down by gravity. 

The amplitude of the stationary, interfacial wave as a function of liquid film thickness is 
shown- - fo r  five representative wavelengths--in figure 6(a)-(e). A series of four peaks is observed 
when varying the liquid film thickness over short corrugations. The series degenerates to two peaks 
for longer wall corrugations. The amplification ratios are practically infinite for wavelengths 
ranging, from 0.005 to 0.1 m, and decrease for longer and shorter waves. The range of liquid film 
thickness over which resonant phenomena occur is between 0.1 and 1.2 ram. 

In comparison to the low gas velocity data, there is an impressive expansion of the 
parameter  space where resonance occurs. Wavelengths triggering infinite amplification now 
extend over more than an order of magnitude. The expansion is towards longer waves, thus 
supporting the previous observation of increasing dependence of the most active wavelength on 
gas velocity. 

The appearance of four peaks for short wall disturbances is arguably attributed to the 
non-uniqueness of the base flow. Indeed, we have two different values of base film thickness for 
the same ReL, one corresponding to countercurrent and the other to cocurrent flow. Therefore, 
the four peaks are two pairs, each associated with the different flow or ienta t ion.  

5. C O N C L U D I N G  REMARKS 

Stratified, laminar flow of a liquid and a gas in a channel with corrugated lower wall is 
considered. An analysis is performed, valid for small-amplitude disturbances but arbitrary 
wavelength and Re number. Very strong amplification of the wall corrugations at the interface is 
calculated under certain conditions. The steep variation of amplification ratio with liquid flow rate 
points to a resonance phenomenon and a tentative mechanism is suggested. 

The effect of  gas flow is profound. In the two typical cases considered (representative of  low- 
and high-pressure drop) of  thin-film flow in a channel with inclination, the amplification at exact 
resonance becomes linearly infinite. With increasing gas velocity, the range of corrugation 
wavelengths most active in producing strong interaction with the interface expands considerably, 
and moves to higher values. 
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The present study demonstrates a qualitative difference between gas-liquid and free-falling film 
flows. Indeed, previous results concerning the later indicated only linearly finite amplification. 
It can be conjectured that the resonant phenomenon under consideration will influence the 
interfacial dynamics of gas-liquid flows in small-scale passages. Testing of this computational 
prediction could provide motivation for experimental work on two-phase flow over wavy surfaces, 
which seems to be presently lacking. 
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